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ABSTRACT numerical simulation of Maxwell's equations: 1) high
frequency asymptotics, which treats scattering and

Under sponsorship from various Department of diffraction as local phenomena, 2) solution of an integral
Defense (DoD) organizations and a Cooperative Research equation (frequency domain) for radiating sources on (or
and Development Agreement (CRADA) with the U.S. inside) the scattering body, which couples all parts of the
Research, Development and Engineering Command, body through a multiple scattering process, and 3) the
Army Research Laboratory (RDECOM-ARL), direct integration of the differential form of Maxwell's
HyPerComp has significantly advanced the state of the art equations in time. Accurate prediction for broadband
of time-domain, broad band electromagnetic simulations. electromagnetic illumination is currently too
The TEMPUS (Time-Domain ElectroMagnetic Parallel computationally expensive to be effectively addressed by
Unstructured Simulator) environment is a complete self multiple applications of even the fastest frequency
contained code suite that includes computer aided design domain techniques. The integration of Maxwell's
(CAD) geometry creation and repair, unstructured equations in time offers the most direct and general
gridding for full-scale targets with general materials, solution for broadband radar scattering and propagation of
scalable parallel code architecture, higher-order accurate electromagnetic pulses in real materials. Time-domain
discontinuous Galerkin solvers for Maxwell's equations, methods may be the best approach for applications such
and post processing utilities for solution visualization and as SAR imagery that require large bandwidths and
extraction of final results like bistatic and monostatic hundreds of aspect angles. The challenge for time-domain
radar cross section (RCS), synthetic aperture radar (SAR) methods has been to maintain global accuracy in the
images, and high-range-resolution (HRR) profiles. The phase and amplitude of waves scattered by large, complex
high-performance TEMPUS environment is well suited structures. This requires a well-conditioned time/space
for modeling a variety of targets and electromagnetic discretization procedure that exhibits high-order
problems of interest to the U.S. Army such as: 1) high- convergence, fast and scalable computation with memory
speed projectiles with subtle surface discontinuities, efficiency, and numerical fidelity through mathematical
ridges and/or fins, 2) ground-based targets such as tanks error control.
and scud missile launchers, and 3) foliage penetration and
ground interaction for target under trees (TUT). Some of Many of the earlier time-domain integration methods
the physics-based phenomenological features that govern suffered serious limitations in the accuracy with which
the electromagnetic response of general targets are: a) boundary conditions could be satisfied, both on the target
specular reflection, b) creeping waves, c) traveling waves, and at the outer limits of the computational domain,
d) slow moving surface waves, e) edge diffraction, f) leading to significant numerical discretization errors
singular currents at surface discontinuities, g) resonating (Warming and Beam, 1976; Rowell et al. 1995). Von
gaps and cavities, and h) general material response. Neumann analysis on regular grids shows the limitations

of low-order integration schemes in propagating waves
1. INTRODUCTION over distances long compared to a wavelength. The

standard second-order upwind approach suffers large
The ability to accurately predict the scattering and dispersion and damping effects when it is applied directly

radiation behavior for broadband (up to 100 GHz) to cell averages of the fields in a second-order time
electromagnetic illumination over complex targets with integration scheme, such as the one devised by Warming
geometrical details including surface discontinuities, and Beam. This is true even though the scheme maintains
gaps, cracks, thin edges, cavities and embedded antennae second-order accuracy in space as well. The impact of
coupled with material treatments is a critical technology these errors on RCS computational accuracy can be
need for DoD. There are three basic approaches to significant, especially when waves scattered strongly
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from different parts of the target come together with interest, such as the interaction of high-power microwave
comparable amplitudes elsewhere on the target surface, or pulses with shielding of various kinds, require tracking
combine in the far field with large relative errors in phase. the buildup of field amplitudes inside the materials, which

We have undertaken the development of a state-of-the- can trigger electrical breakdown or even changes in

art time-domain computational electromagnetics (CEM) physical state. Such processes depend nonlinearly on the

technology known as TEMPUS T:ime-Domain EM local field strength, and consequently they are not

Parallel Unstructured Simulator). TEMPUS includes all amenable to the frequency-domain description
aspects of a CEM simulation including CAD geometry traditionally employed in radar scattering, which assumesaspectsthat the target response is linear in the local fields.
modeling and repair, unstructured gridding for full-scale

targets with general materials, parallel run set up (for PC-
and workstation clusters) and higher-order accurate
solvers for Maxwell's equations, and post processing 1.2 High-Order Discontinuous Galerkin Solver
utilities for solution visualization and extraction of final
results like bistatic and monostatic RCS, SAR images, Scattering from many targets of interest to the DoD is
and HRR profiles. dominated by surface traveling waves and cavities, which

require modeling long distance wave propagation with
The numerical method at the heart of TEMPUS high accuracy. This very challenging requirement for

numerical schemes is currently met by employing very
integrates the full set of Maxwell's equations in general fine meshes, which can quickly exhaust computational
media, optimized for the evaluation of radar signatures for resources. Numerous numerical experiments have shown,resources. Numeroustnumerial experimentsfhaveushown
arbitrary targets that may be up to a few hundred however, that high-order methods are far more efficient
wavelengths across in the largest dimension. The method for solving scattering problems that require this high
is an implementation of the discontinuous Galerkin accuracy. Indeed, although high-order methods are more
approach developed by Cockburn and Shu in 1998 for computationally expensive per grid cell than low-order
solving hyperbolic equations in the time domain on methods, they require fewer cells to approximate the
unstructured grids. A description of this implementation solution with the same accuracy.
may be found in the recent paper by Kabakian et al..
(2004) Some of the notable qualities of this higher-order Also, singularities in the exact solution can cause
approach include extremely low phase errors, the ability errors to accumulate globally in the numerical solution for
to preserve accuracy in the presence of highly irregular some approaches. Even for more robust schemes,
unstructured meshes, straightforward interfacing with resolving the surface currents in the vicinity of a physical
material boundaries, and straightforward parallelization. discontinuity (edge, corner, and tip) may be required to

The objective of this paper is to highlight the predict the strength of the diffracted fields with acceptable

capabilities of TEMPUS in simulating various accuracy.

electromagnetic features and to illustrate the accuracy of Using the discontinuous Galerkin method, HyPerComp
TEMPUS results using comparisons to measured data. has successfully developed the unstructured, parallel,

high-order solver TEMPUS, representing a significant
1.1 Physics of Maxwell's equations leap in the state of the art in time-domain CEM. The

discontinuous Galerkin method has three key properties
The integration of Maxwell's equations in time offers that we have found to be essential for performing fast and

the most direct and general solution for broadband radar accurate simulations for electrically large and complex
scattering and propagation of electromagnetic pulses in targets:
real materials. The challenge for time-domain methods
has been to maintain global accuracy in the phase and 1. Unstructured hybrid grid support to handle
amplitude of waves scattered by large, complex complex realistic target geometries.
structures. In addition, some of these methods have 2. Highly scalable parallelization to exploit
suffered serious limitations in the accuracy with which massively parallel computers.
boundary conditions could be satisfied both on the target 3. High-order discretization to model accurately
and at the outer limits of the computational domain, long distance propagation and complex wave

interactions.
The sources of the electromagnetic fields of interest

are typically currents on antenna structures and A brief description of the discontinuous Galerkin method
polarizations induced in target materials by incident radar is given by Kabakian et al. (2004)
pulses. The simplest case of plane-wave reflection by a
metal aircraft can be treated as a problem in determining
the currents induced on the aircraft surface. Other cases of



2. TEMPUS VALIDATIONS RCS variation as a function of frequency is compared
with the Mie series solution. The HRR profile clearly

To assess the wave propagation properties of the shows the presence of a creeping wave. After the first
discontinuous Galerkin method, a number of numerical range signal that corresponds to the pulse striking the
experiments have been performed in one- and two- nose of the sphere, a creeping wave signal shows a
dimensions. Using the one-dimensional wave equation, a response at a range given by the diameter+ *radius. In
Gaussian pulse, having 9 cells across its width at half- the HRR profile this corresponds to a response located
maximum, is propagated over 5000 cell-widths with the approximately 62.8" from the center of the sphere.
Galerkin method using polynomials of degrees zero, one, Range Profile far a Sphere, 0-2 GHz Pulse
and two. The results for a standard second-order accurate
"RK4" algorithm (Rowell et al.,1995) and the Galerkin . ., . ... ,

schemes (Kabakian et al. 2004) are shown in Figure 1. Specular
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Fig. 1. One dimensional wave propagation.
540

The "RK4" algorithm has distorted the shape of the -10.T0MPU - M~ie Series
pulse, which is indicative of the large accumulation of -eSi
phase errors. In contrast, the Galerkin-pO solution -& .

exhibits high levels of dissipation. Both methods require X0 1 .5 2o

much finer meshes to preserve accuracy over such a long Frequency, GHz

propagation distance. But the Galekin-pl, and especially Fig. 2. Specular and creeping waves for a sphere.

the Galerkin-p2, solutions have retained the pulse shape
remarkably well. Furthermore, in contrast to the "RK4" 2.2 Traveling Wave RCS

scheme, the dominant type of error for DG is dissipation,
with phase error always remaining very low. This makes Usually, any long and thin object will trigger a

the Galerkin schemes extremely attractive for accurately traveling wave pattern that dominates the backscatter

simulating the constructive and deconstructive return at certain grazing incidence angles. Accurate

interferences that occur in problems dominated by prediction of traveling wave RCS is a challenge for

traveling waves and multiple-bounces. numerical methods. The high-order formulation inherent
in the TEMPUS solver is well suited for computing such

2.1 Creeping Wave Prediction traveling wave behavior. Many examples are shown here
to illustrate the traveling wave RCS prediction by

While the case of a sphere is geometrically simple, TEMPUS. Figure 3 shows RCS results for a business

the TEMPUS broad band capability accurately predicts card size flat plate target that is dominated by the

the creeping wave behavior that shows up as a late time presence of a traveling wave at grazing angles. Figures 4

return in the HRR profile. This is illustrated for a sphere and 5 show results for a long and slender 10" ogive that

in Figure 2. The broadband RCS results and the exhibit a strong traveling wave for near nose-on

associated HRR profile for a sphere (radius of 40" or 1 incidence. The backscatter RCS and the 900 bistatic RCS

meter) for frequencies from 0 to 2 GHz are shown. The predicted by TEMPUS compare quite well with data



measured by the National Radar Test Facility. Figure 5 Figure 6 shows the range profile for a 50-caliber
shows a large backscatter RCS due to a traveling wave bullet at near nose-on incidence. The measurements
that occurs at an incident azimuth angle of 80 which is not were made at frequencies between 32.4-35.6 GHz. This
present at an incident angle of 00. results in a down-range resolution of 1.85". The

measured range profile and the TEMPUS simulation for
(25-5 pisA HH-pnl) the same bandwidth compare well. A simulation was also

20 performed using 20-GHz of bandwidth and a range
20 -- EMG Dal resolution of 0.3". The range profile shows two peaks,

- Galrin-p2 one corresponding to the tip and one corresponding to the
back end of the bullet.
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S.. Fig. 6. Range profile for a bullet at near nose-on
Q½A. incidence angle.

2.3 Small Geometrical Features on Large Targets

One of the challenges of CEM is to be able to model

small geometrical features on a large target (Walter

1965). These include gaps, cracks, sharp edges, and thin
wires. While it may be possible to model these small

Fig. 4. TEMPUS accurately predicts the regions through appropriate basis functions that represent
for a 10" ogive. the singular behavior of EM fields in their vicinity, we are

Range Profile for a 10' 0give, 2.5-3.5 GHz HH-pol Pulse exploiting the TEMPUS high-order capability by gridding
Demonslrctlon of Strong Trovnlimg Wave

20 .... . I I .... I ' ' the large and small geometrical features through
8 deg incidence appropriate grid resolutions leading to very small grid

0 0 deg incidence cells being present along with large cells.
in W

-20 Contribution The class of missile-like objects is of interest to the

E -40 Army. Small variations in surface continuity on a cone-
C cylinder body can cause dramatic changes in backscatter
r -60 RCS. Three simple missile-like geometries, shown in

Figure 6, were tested to study the effect of such

-30 variations, The tip-a geometry has a 900 step on the
cylinder body where tip-b has a step with a rounded edge..

-100a Tip-c has a step on the front cone in addition to the
rounded edge step of tip-b. Results were generated for

-120- these geometries at a center frequency of 34 GHz (Ka
-100 -50 0 50 100 150 200

Down Range (inch) band). Figure 7 shows a comparison of HRR profiles for
tip-a and tip-b, and a similar one shown in Figure 8 for

Fig. 5. Range profile showing a strong traveling wave tip-b and tip-c. The HRR profile clearly shows a large
return for an incidence angle of 80 from nose-on. drop in backscatter return from the rounded edge relative



to the sharp edge . Figure 9 shows a comparison of the for a 32-36 GHz pulse. This result shows a return peak
backscatter RCS for tip-a with measured data (Pizzillo well past the end of the corrugation shown in yellow
and Wellman, 2003). The comparison is quite good indicating the presence of a slow moving surface wave.
despite the fact that the CAD file geometry was not an Figure 11 shows a comparison of range profiles for a
exact representation of the measured target. The high cylinder with and without corrugations of a certain size.
frequency code, Xpatch, did not predict the behavior of When the corrugation is removed, the range profile shows
such subtle surface discontinuities for head-on aspect no sign of a slow moving wave. This phenomenology has
angles (C. Kenyon 2004, personal communication). been confirmed with measurement results provided under

the CRADA. Such features dominate the RCS of many
realistic slender targets but are often overlooked in less-accurate simulations.

Tip-a (stepped)

Tip-b (smooth)

~stePcp ~
Tip-c (step on cone) -d -

Fig. 6. Three cone-cylinder geometries that were -it
measured and simulated.
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Fig. 7. Range profile for a 14-GHz bandwidth (24- 40 "0

GHz) clearly shows the return from regions of surface
discontinuity. Data

-- TEOMPUS
2.4 Slow Moving Surface Waves

Missile-like targets exhibiting a certain pattern of 27 2 a, 3

surface grooves can encounter slow moving surface Frqu.ency (NHz)

waves. TEMPUS can demonstrate the presence of such
slow moving surface waves for a simple corrugated Fig. 9. Comparison of RCS vs frequency between
cylinder. Depending on the corrugation geometry (depth measured data and TEMPUS for Tip-a.
and width of corrugation and number of corrugations per
wavelength), the degree of slowness of surface waves is
altered. Figure 10 shows the geometry and gridding for a
corrugated cylinder along with a simulated range profile



(NIS), ethernet cables, switches, routers and hubs, rack
mounts and power supply for fine-grain clusters.
HyPerComp is currently installing a 128-node PC cluster
using Pentium IV, 2.2-GHz motherboard with at least 1
Gb memory/node. We are also documenting the lessons
learned in configuring and setting up both the hardware
and software for PC clusters.

3. CONCLUSION

___ .. The radar cross section of many realistic targets is
Slo m n influenced by several physics-based electromagnetic
Slow moving phenomena such as creeping waves, traveling waves and

slow moving surface waves that are difficult to simulate
and require a very accurate prediction capability to
reproduce. Employing higher-order algorithms, the time-
domain environment TEMPUS has demonstrated these
phenomena.
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